

# **Axial Piston Pump**

Series PV Design 42/43 Variable Displacement aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding



ENGINEERING YOUR SUCCESS.

### Contents Page 5-5-Ordering Code Preferred Program ......4 Efficiency and Case Drain Flows......9 Dimensions.....11 Mounting kits ......17 **Pump combinations** Thru Drive, Shaft Load Limitations......18 Compensators Compensators Dimensions ...... 19 Pressure Compensators ......23 Load-Sensing Compensators......24 Power Compensators......25 Power Compensators, Diagrams......26 Electronic Module PQDXXA (digital)......28

Catalogue HY30-3243/UK. 07/2008

#### **Technical Features**

- Low noise level •
- Fast response
- Service-friendly
- High self-priming speed
- Compact design
- Thru drive for 100% nominal torque

#### With thru drive for single and multiple pumps

Swash plate type for open circuit



#### **Technical Data**

|                                                   |                         | PV063 | PV080 | PV092 | PV140 | PV180 | PV270 |
|---------------------------------------------------|-------------------------|-------|-------|-------|-------|-------|-------|
| Size                                              |                         | 3     | 3     | 3     | 4     | 4     | 5     |
| Max. Displacement                                 | [cm <sup>3</sup> /rev.] | 63    | 80    | 92    | 140   | 180   | 270   |
| Output flow at 1500 min <sup>-1</sup>             | [l/min]                 | 94.5  | 120   | 138   | 210   | 270   | 405   |
| Nominal pressure pN                               | [bar]                   | 350   | 350   | 350   | 350   | 350   | 350   |
| Max. pressure pmax <sup>1)</sup>                  | [bar]                   | 420   | 420   | 420   | 420   | 420   | 420   |
| Max. Case drain pressure                          | [bar]                   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   |
| Min. Inlet pressure, abs.                         | [bar]                   | 0.8   | 0.8   | 0.8   | 0.8   | 0.8   | 0.8   |
| Max. Inlet pressure                               | [bar]                   | 16    | 16    | 16    | 16    | 16    | 16    |
| Input power at 1500 min <sup>-1</sup> and 350 bar | · [kW]                  | 61.5  | 78    | 89.5  | 136   | 175   | 263   |
| Max speed <sup>2)</sup>                           | [min <sup>-1</sup> ]    | 2800  | 2500  | 2300  | 2400  | 2200  | 1800  |
| Moment of inertia                                 | [kgm²]                  | 0.018 | 0.018 | 0.018 | 0.030 | 0.030 | 0.098 |
| Weight                                            | [kg]                    | 60    | 60    | 60    | 90    | 90    | 172   |

1) Maximum 20% of the working cycle.

2) The maximum speed ratings are shown for an inlet pressure of 1 bar (absolute) and for a fluid viscosity of  $v = 30 \text{ mm}^2/\text{s}$ 

#### **General Information**

Premium quality hydraulic mineral fluid are recommended, like HLP oils to DIN 51522, part 2, Brugger- value has to be 30 N/mm<sup>2</sup> minimum for general application and 50 N/mm<sup>2</sup> for heavily loaded hydraulic equipment and fast cycling machines and/or high dynamic loads, measured in accordance with DIN 51 347-2, see also Document HY30-3248/UK Parker Hydraulic- Fluids.

#### Viscosity

The normal operating viscosity should range between 16 and 100 mm<sup>2</sup>/s (cSt). Max. start-up viscosity is 800 mm<sup>2</sup>/s (cSt).

#### Seals

NBR seals are used for operation with hydraulic fluids based on mineral oil. For synthetic fluids, such as phosphoric acid esters, Flourocarbon seal are required.

#### Filtration

For maximum pump and system component functionability and life, the system should be protected from contamination by effective filtration. Fluid cleanliness should be in accordance with ISO classification ISO 4406:1999. The quality of filter elements should be in accordance with ISO standards. Minimum requirement for filtration rate x (mm); General hydraulic systems for satisfactory operation: Class 20/18/15, according to ISO 4406:1999 Hydraulic systems with maximised component life and functionability:

Class 18/16/13, according to ISO 4406:1999

Hydraulic Pumps, Variable **Series PV** 



| Code | Port <sup>2)</sup> | Threads <sup>3)</sup> |  |
|------|--------------------|-----------------------|--|
| 1    | BSPP               | Metric                |  |
| 44)  | BSPP               | Metr. M14             |  |

<sup>2)</sup> Drain, gauge and flushing ports

<sup>3)</sup> All mounting and connecting threads

 $^{\rm 4)}$  For PV063-PV180 only: pressure port 1 1/4" with 4 x M14 instead of 4 x M12

Mounting kits for flexible mounting of multiple pumps, see page 17.

| Standard Pressure Compensator |     |                                                     |       |                   |             |        |                               |             |  |
|-------------------------------|-----|-----------------------------------------------------|-------|-------------------|-------------|--------|-------------------------------|-------------|--|
| C                             | od  | е                                                   |       |                   |             |        |                               |             |  |
| 0                             | 0   | 1                                                   |       |                   | compensator |        |                               |             |  |
| F                             | D   | S                                                   | 5     | 10                |             |        |                               |             |  |
| F                             | н   | S                                                   | 5     | <b>40</b> ·       |             |        |                               |             |  |
| F                             | w   | S                                                   |       | 70                | - 350       | bar.   | spindle + lock nut            |             |  |
| -                             |     |                                                     |       | Ren               | note        | Com    | pensator options              |             |  |
| F                             | R   |                                                     |       | Rei               | mote        | pres   | sure compensator              |             |  |
| F                             | F   |                                                     |       | 1                 | oad-        | Sens   | ing compensator               |             |  |
| •                             | •   |                                                     | v     | -<br>ariati       | one         | for Be | amote Compensator             |             |  |
|                               |     | C                                                   |       | unun              | Fyto        | rnal r | pressure nilot <sup>8)</sup>  |             |  |
|                               |     | 1                                                   | 1     | N                 |             | 103 ir | pressure prior /              |             |  |
|                               |     |                                                     |       |                   |             |        | NAC1D* mounted                |             |  |
|                               |     | Г                                                   |       | FII               |             | live F | VACTP mounted                 |             |  |
|                               |     |                                                     |       | Pov               | ver c       | ompe   | ensator                       |             |  |
| C                             | :od | e                                                   |       | ispla             | ceme        | ent    | Compensator on                | tion        |  |
| _                             |     | _                                                   | 063   | 1/10              | 180         | 270    | Nom nower [kW]                | Nom torque- |  |
|                               |     |                                                     | 092   | 2                 | 100         | 210    | at 1500 min <sup>-1</sup>     | [Nm]        |  |
| G                             |     |                                                     |       |                   |             |        | 11                            | 71          |  |
| Н                             |     |                                                     |       |                   |             |        | 15                            | 97          |  |
| Κ                             |     |                                                     |       |                   |             |        | 18.5                          | 120         |  |
| М                             |     |                                                     |       |                   |             |        | 22                            | 142         |  |
| S                             |     |                                                     |       |                   |             |        | 30                            | 195         |  |
| Т.                            |     |                                                     |       |                   |             |        | 37                            | 240         |  |
| U                             |     |                                                     |       |                   |             |        | 45                            | 290         |  |
| <u>vv</u>                     |     |                                                     |       |                   |             |        | 55                            | 355         |  |
| т<br>7                        |     |                                                     |       |                   |             |        | /5                            | 460<br>585  |  |
| 2                             |     |                                                     |       |                   |             |        | 110                           | 715         |  |
| 3                             |     |                                                     |       |                   |             |        | 132                           | 850         |  |
|                               |     |                                                     |       |                   | I           | Fund   | tion                          |             |  |
|                               | 1   |                                                     |       |                   |             | Tunc   | Power compens                 | ator        |  |
|                               | C   |                                                     |       |                   |             |        | Power compens                 | ator        |  |
|                               |     |                                                     |       |                   |             |        | and load-sensin               | a           |  |
|                               |     |                                                     |       |                   | v           | ariati | ion                           | 5           |  |
|                               |     | A                                                   |       |                   |             |        | NG6 interface to              | p side      |  |
|                               |     | В                                                   | 3     |                   |             |        | No pressure cor               | npensation  |  |
|                               |     | C                                                   |       |                   |             |        | Adjustable                    |             |  |
|                               |     |                                                     | 1     |                   |             |        | pressure compe                | nsation     |  |
|                               |     |                                                     |       |                   |             |        |                               |             |  |
|                               | Co  | de                                                  | ,     |                   |             | Con    | npensator style               |             |  |
| electro hydraulic control     |     |                                                     |       |                   |             |        |                               |             |  |
| F                             | F   | P V closed loop displacement control only. no pres- |       |                   |             |        |                               |             |  |
|                               | Τ.  |                                                     |       | sure compensation |             |        |                               |             |  |
| U                             | F   | ,                                                   |       | close             | d loc       | op pro | portional displacement co     | ntrol       |  |
|                               | Ľ   |                                                     |       | with p            | oress       | sure c | compensation                  |             |  |
| С                             | om  | pe                                                  | ensat | or ve             | rsior       |        |                               |             |  |
|                               |     |                                                     | R     | pilot             | opera       | ated p | pressure control, NG6 inter   | face        |  |
|                               |     |                                                     | к     | versi             | on U        | PR, w  | vith proportional pilot valve | type        |  |

**PVACRE..35** mounted

loop pressure and power control

version UPK, with pressure sensor for closed

М

#### Note:

| Compensator differential $\Delta \mathbf{p}$ is factory pre- | e-set to:  |
|--------------------------------------------------------------|------------|
| remote compensators, power control                           | 15 ± 1 bar |
| load sensing comp. (not power control)                       | 10 ± 1 bar |

Hydraulic Pumps, Variable **Series PV** 





| Standard Pressure Compensator |     |   |                                                |  |  |  |  |
|-------------------------------|-----|---|------------------------------------------------|--|--|--|--|
| <br>С                         | ode | е | Compensator options                            |  |  |  |  |
| 0                             | 0   | 1 | No compensator                                 |  |  |  |  |
| 1                             | 0   | 0 | With cover plate, no control function          |  |  |  |  |
| F                             | D   | S | 10 - 140 bar, Spindle + lock nut               |  |  |  |  |
| F                             | н   | s | 40 - 210 bar, Spindle + lock nut               |  |  |  |  |
| F                             | W   | s | 70 - 350 bar, Spindle + lock nut               |  |  |  |  |
|                               |     |   | Remote compensator options                     |  |  |  |  |
| F                             | R   |   | Remote pressure compensator                    |  |  |  |  |
| F                             | S   |   | Variation R, for quick unload valve            |  |  |  |  |
| F                             | F   |   | Load-Sensing compensator                       |  |  |  |  |
| F                             | Т   |   | Two valve load-sensing compensator             |  |  |  |  |
|                               |     |   | Compensator variation                          |  |  |  |  |
|                               |     | С | External pressure pilot <sup>14)</sup>         |  |  |  |  |
|                               |     | 1 | NG6 interface top side for pilot valves        |  |  |  |  |
|                               |     | 2 | Like 1 but with ext. pilot port <sup>16)</sup> |  |  |  |  |
|                               |     | Ρ | Pilot valve PVAC1P* mounted                    |  |  |  |  |
|                               |     | К | Proppilot valve type PVACRE35 mounted          |  |  |  |  |
|                               |     | L | Pilot valve with DIN lock mounted              |  |  |  |  |
|                               |     | Ζ | Accessory mounted <sup>15)</sup>               |  |  |  |  |
|                               |     |   |                                                |  |  |  |  |

|   |     |   |     | Но  | rse p | owe | compe   | nsator             |                        |  |  |
|---|-----|---|-----|-----|-------|-----|---------|--------------------|------------------------|--|--|
| С | ode | ) |     | Dis | plac  | eme |         | Compensa           | Compensator option     |  |  |
|   |     |   | 063 | 140 | 180   | 270 |         | Nominal HP. [kW]   | Nom. torque            |  |  |
|   |     |   | 100 |     |       |     |         | at 1500 <b>rpm</b> | [Nm]                   |  |  |
| G |     |   |     |     |       |     |         | 11                 | 71                     |  |  |
| Н |     |   |     |     |       |     |         | 15                 | 97                     |  |  |
| Κ |     |   |     |     |       |     |         | 18,5               | 120                    |  |  |
| М |     |   |     |     |       |     |         | 22                 | 142                    |  |  |
| S |     |   |     |     |       |     |         | 30                 | 195                    |  |  |
| Т |     |   |     |     |       |     |         | 37                 | 240                    |  |  |
| U |     |   |     |     |       |     |         | 45                 | 290                    |  |  |
| W |     |   |     |     |       |     |         | 55                 | 355                    |  |  |
| Y |     |   |     |     |       |     |         | 75                 | 485                    |  |  |
| Ζ |     |   |     |     |       |     |         | 90                 | 585                    |  |  |
| 2 |     |   |     |     |       |     |         | 110                | 715                    |  |  |
| 3 |     |   |     |     |       |     |         | 132                | 850                    |  |  |
|   |     |   |     |     |       |     | unction |                    |                        |  |  |
|   | L   |   |     |     |       |     |         | Horse power of     | ompensator             |  |  |
|   | С   |   |     |     |       |     |         | Horse power of     | ompensator             |  |  |
|   |     |   |     |     |       |     |         | and Load           | Sensing                |  |  |
|   |     |   |     |     |       | С   | npens   | ator variation     |                        |  |  |
|   |     | А |     |     |       |     |         | NG 6 interfa       | ace top side           |  |  |
|   |     | В |     |     |       |     |         | No pressure o      | compensation           |  |  |
|   |     | С |     |     |       |     |         | Adjustable pressu  | ire compensati         |  |  |
|   |     | к |     |     |       |     |         | Proppil            | ot valve               |  |  |
|   |     |   |     |     |       |     |         | type PVACRE        | 35 mounted             |  |  |
|   |     | z |     |     |       |     |         | Accessories        | mounted <sup>15)</sup> |  |  |

|   |     |   | Electrohydraulic compensator                  |
|---|-----|---|-----------------------------------------------|
| С | ode | ÷ | Compensator option                            |
|   |     |   | Pilot pressure supply                         |
| F | Ρ   | V | closed loop displacement control only,        |
|   |     |   | no pressure compensation                      |
|   | •   |   | Function                                      |
| J | Ρ   |   | Proportionalhubvolumenregelung                |
|   |     |   | Variation                                     |
|   |     | R | pilot operated pressure control,              |
|   |     |   | NG6 interface                                 |
|   |     | к | version UPR, with proportional pilot valve    |
|   |     |   | type PVACRE35 mounted                         |
|   |     | М | version UPK, with pressure sensor for         |
|   |     |   | closed loop pressure and power control        |
|   |     | Z | Version R, accessories mounted <sup>15)</sup> |
|   |     |   |                                               |

#### Note

Compensator differential  $\Delta p$  is to be adjusted:

 $\label{eq:compensators} \begin{array}{ll} \mbox{remote compensators, power control} & 15 \pm 1 \mbox{ bar} \\ \mbox{(Codes FR}^{\star}, \mbox{FT}^{\star}, \mbox{*L}^{\star}, \mbox{*C}^{\star}, \mbox{UPR, UPD, UPZ, UPG)} \\ \mbox{load sensing comp. (not power control)} & 10 \pm 1 \mbox{ bar} \\ \mbox{(Codes FF}^{\star}) \end{array}$ 

- <sup>14)</sup> Not for two-valve-compensator
- <sup>15)</sup> Accessories not included, please specify on order with full model code.
- <sup>16)</sup> Only Codes \*FR\* and \*FT\*



# Hydraulic Pumps, Variable Series PV

#### PV063 - PV092







Typical sound level for single pumps, measured in unechoic chamber according to DIN 45 635, part 1 and 26. Microphone distance 1m; speed: n = 1500 rpm.



PV270



All data measured with mineral oil viscosity 30 mm<sup>2</sup>/s (cSt) at 50°C.

### Efficiency, power consumption PV063



#### **PV080**





#### Efficiency and case drain flows PV063, PV080, PV092

The efficiency and power graphs are measured at an input speed of n = 1500 rpm, a temperature of 50 °C and a fluid viscosity of 30 mm<sup>2</sup>/s.

Case drain flow and compensator control flow leave via the drain port of the pump. To the values shown are to be added 1 to 1.2 l/min , if at pilot operated compensators (codes FR\*, FF\*, FT\*, power compensator and p-Q-control) the control flow of the pressure pilot valve also goes through the pump.

**Please note:** The values shown below are only valid for static operation. Under dynamic conditions and at rapid compensation of the pump the volume displaced by the servo piston also leaves the case drain port. This dynamic control flow can reach up to 80 l/min! Therefore the case drain line is to lead to the reservoir at full size and without restrictions as short and direct as possible.

#### Case drain flows PV063-092



5



### Efficiency, power consumption PV140



**PV180** 







#### Efficiency and case drain flows PV140, PV180, PV270

The efficiency and power graphs are measured at an input speed of n = 1500 rpm, a temperature of 50 °C and a fluid viscosity of 30 mm<sup>2</sup>/s.

Case drain flow and compensator control flow leave via the drain port of the pump. To the values shown are to be added 1 to 1.2 l/min , if at pilot operated compensators (codes FR\*, FF\*, FT\*, power compensator and p-Q-control) the control flow of the pressure pilot valve also goes through the pump.

**Please note:** The values shown below are only valid for static operation. Under dynamic conditions and at rapid compensation of the pump the volume displaced by the servo piston also leaves the case drain port. This dynamic control flow can reach up to 120 l/min! Therefore the case drain line is to lead to the reservoir at full size and without restrictions as short and direct as possible.

#### Case drain flows PV140-180







-Parker

#### PV063 - 092, metric version



Shown is a clockwise rotating pump with standard pressure compensator. Counter clockwise rotating pumps have inlet, outlet and gauge port reversed.



#### PV063 - 092, SAE version



| Thru drive adaptors are available with the following dimensions |       |    |       |       |     |     |     |                |
|-----------------------------------------------------------------|-------|----|-------|-------|-----|-----|-----|----------------|
| Drawing Dimension                                               |       |    |       |       |     |     |     |                |
|                                                                 | Α     | В  | С     | D     | Е   | F   | G   | Remark         |
| Thru drive option                                               |       |    |       |       |     |     |     |                |
| A                                                               | 82,55 | 10 | -     | -     | -   | 100 | M8  | SAE A 2-Bolt   |
| В                                                               | 101,6 | 12 | 127   | 89,8  | M12 | 146 | M12 | SAE B 2/4-Bolt |
| С                                                               | 127   | 14 | 161,6 | 114,5 | M12 | 181 | M16 | SAE C 2/4-Bolt |
| D                                                               | 152,4 | 14 | 228,5 | 161,6 | M16 | -   | -   | SAE D 4-Bolt   |
| G                                                               | 63    | 10 | 85    | 60,1  | M8  | 100 | M8  | 2/4-Bolt       |
| Н                                                               | 80    | 10 | 103   | 72,8  | M8  | 109 | M10 | 2/4-Bolt       |
| J                                                               | 100   | 12 | 125   | 88,4  | M10 | 140 | M12 | 2/4-Bolt       |
| К                                                               | 125   | 12 | 160   | 113,1 | M12 | 180 | M16 | 2/4-Bolt       |
| L                                                               | 160   | 12 | 200   | 141,4 | M16 | -   | -   | 4-Bolt         |

Parker Hannifin Corporation Hydraulics Group

#### PV140 - 180, metric version



Shown is a clockwise rotating pump with standard pressure compensator. Counter clockwise rotating pumps have inlet, outlet and gauge port reversed.



PV140 - 180, SAE version



| Thru drive adaptors are available with the following dimensions |       |    |       |       |     |     |     |                |
|-----------------------------------------------------------------|-------|----|-------|-------|-----|-----|-----|----------------|
| Drawing Dimension                                               | Α     | В  | С     | D     | E   | F   | G   | Remark         |
|                                                                 |       |    |       |       |     |     |     |                |
| Thru drive option                                               |       |    |       |       |     |     |     |                |
| A                                                               | 82,55 | 10 | -     | -     | -   | 106 | M10 | SAE A 2-Bolt   |
| В                                                               | 101,6 | 12 | 127   | 89,8  | M12 | 146 | M12 | SAE B 2/4-Bolt |
| С                                                               | 127   | 14 | 161,6 | 114,5 | M12 | 181 | M16 | SAE C 2/4-Bolt |
| D                                                               | 152,4 | 14 | 228,5 | 161,6 | M16 | -   | -   | SAE D 4-Bolt   |
|                                                                 |       |    |       |       |     |     |     |                |
| Н                                                               | 80    | 10 | 103   | 72,8  | M8  | 109 | M10 | 2/4-Bolt       |
| J                                                               | 100   | 12 | 125   | 88,4  | M10 | 140 | M12 | 2/4-Bolt       |
| K                                                               | 125   | 12 | 160   | 113,1 | M12 | 180 | M16 | 2/4-Bolt       |
| L                                                               | 160   | 12 | 200   | 141,4 | M16 | -   | -   | 4-Bolt         |

Parker Hannifin Corporation Hydraulics Group

#### PV 270, metric version



Shown is a clockwise rotating pump with standard pressure compensator. Counter clockwise rotating pumps have inlet, outlet and gauge port reversed.



#### PV270, SAE version





Μ

141,4

176,8

M16

M20

224

200 250

13,5 13,5

160

200

Parker Hannifin Corporation Hydraulics Group

M20

2/4-Bolt

4-Bolt



| Max. transferable | torque in [Nm] fo | or different shafts options |
|-------------------|-------------------|-----------------------------|
|-------------------|-------------------|-----------------------------|

| Shaft code                                          | PV063-092 | PV140-180 | PV270 |
|-----------------------------------------------------|-----------|-----------|-------|
| D                                                   | 1320      | 2000      | 2000  |
| E                                                   | 1218      | 2680      | 2680  |
| F                                                   |           | 1320      |       |
| G                                                   |           | 1640      |       |
| K                                                   | 1150      | 1900      | 2850  |
| L                                                   | 1400      | 2650      | 3980  |
| Max. torque transmission cap. for rear mounted pump | 560       | 1100      | 1650  |

#### Important notice

The max. allowable torque of the individual shaft must not be exceeded. For 2-pump combinations there is no problem because PV series offers 100% thru torque. For 3-pump combinations (and more) the limit torque could be reached or exceeded.

Therefore it is necessary to calculate the torque factor and compare it with the allowed torque limit factor in the table.

| <b>Required:</b> | calculated torque factor |
|------------------|--------------------------|
|                  | < torque limit factor    |

To make the necessary calculations easier and more user friendly it is not required to calculate actual torque requirements in Nm and compare them with the shaft limitations. The table on the right shows limit factors that include material specification, safety factors and conversion factors.

The **total torque factor** is represented by the sum of the individual torque factors of all pumps in the complete pump combination.

#### **Total torque factor of the combination** = sum of individual torque factors of all pumps

The **torque factor of each individual pump** is calculated by multiplying the max. operating pressure p of the pump (in bar) with the max. displacement Vg of the pump (in cm<sup>3</sup>/rev).

> Torque factor of any pump = p x Vg

| Pump      | Shaft | Torque limit factor |
|-----------|-------|---------------------|
|           | D     | 77280               |
| PV063-092 | E     | 72450               |
|           | K     | 67620               |
|           | L     | 83720               |
|           | D     | 118400              |
|           | E     | 158760              |
| PV140-180 | F     | 78750               |
|           | G     | 97650               |
|           | K     | 113400              |
|           | L     | 157500              |
|           | D     | 119000              |
| PV270     | E     | 159700              |
|           | K     | 170100              |
|           | L     | 236250              |



### 172 46 43,5 41 ⊕ 45 0 pump axis L I 1 Dimensions remote pressure and load sensing compensator, codes ... FRC, ... FFC - 172 46 43,5 - 41 ⊕ 45 72 ۲ 4 pump axis remote control port p<sub>P</sub> (code ...FRC) resp. LS port p<sub>F</sub> (code ...FFC) r: ļ Dimensions horse power control cartridge and displacement sensor 45 73 37,5 pump body (case)





#### Dimensions compensator with NG6-interface for pilot valves, codes ...FR1, ...FR2, ...FF1



Compensators with code ... FR1 have no remote control port.

#### Dimensions compensator with mounted pressure pilot valve, codes ... FRP, ... FFP



Compensators with codes ...FRD, ...FFD have a proportional pressure pilot valve type PVACPPC\*\*35 mounted; Compensators with codes ...FRK, ...FFK have a proportional pressure pilot valve type PVACREC\*\*35 mounted; \*\* for threads and seals option;

Dimensions of pilot valves see following pages.

Dimensions for horse power compensator \*L\* and \*C\* are identical to FR\* and FF\*.



#### Dimensions two-spool load sensing compensator, code ...FT1, ...FT2, ...FTP



#### Dimensions two-spool load sensing compensator with proportional pressure pilot valve, code ...FTK



Parker Hannifin Corporation Hydraulics Group

#### Dimensions proportional displacement control, code ... FPV



pump axis





Dimensions proportional p/Q control, codes ... UPR, ... UPK, ... UPM



-Parker

#### Standard pressure compensator, code F\*S

The standard pressure compensator adjusts the pump displacement according to the actual need of the system in order to keep the pressure constant.

As long as the system pressure at outlet port P is lower than the set pressure (set as spring preload of the compensator spring) the working port A of the compensator valve is connected to the case drain and the piston area is unloaded. Bias spring and system pressure on the annulus area keep the pump at full displacement.

When the system pressure reaches the set pressure the compensator valve spool connects port  $P_1$  to A and builds up a pressure at the servo piston resulting in a downstroking of the pump. The displacement of the pump is controlled in order to match the flow requirement of the system.

#### Remote pressure compensator, code FRC

While at the standard pressure compensator the pressure is set directly at the compensator spring, the setting of the remote pressure compensator can be achieved by any suitable pilot pressure valve connected to pilot port  $P_P$ . The pilot flow supply is internal through the valve spool.

The pilot flow is 1 - 1.5 l/min. The pilot valve can be installed remote from the pump in some distance. That allows pressure setting e. g. from the control panel of the machine. The remote pressure compensator typically responds faster and more precisely than the standard pressure compensator and is able to solve instability problems that may occur with a standard pressure compensator in critical applications.

The pressure pilot valve can also be electronically controlled (proportional pressure valve) or combined with a directional control valve for low pressure standby operation.

#### Remote pressure compensator, code FR1

Version \*FR1 of the remote pressure compensator provides on its top side an interface NG6, DIN 24340 (CETOP 03 at RP35H, NFPA D03).

This interface allows a direct mounting of a pilot valve (see option \*FRP and \*FRK page 7). Beside manual or electrohydraulic operated valves it is also possible to mount complete multiple pressure circuits directly on the compensator body. Parker offers a variety of these compensator accessories ready to install.

All remote pressure compensators have a factory setting of 15 bar differential pressure. With this setting, the controlled pressure at the pump outlet is higher than the pressure controlled by the pilot valve.













#### Load-Sensing compensator, code FFC

The load-sensing compensator has an external pilot pressure supply. Factory setting for the differential pressure is 10 bar. The input signal to the compensator is the differential pressure at a main stream resistor. A load-sensing compensator represents mainly a flow control for the pump output flow, because the compensator keeps the pressure drop at the main stream resistor constant.

A variable input speed or a varying load(-pressure) has consequently no influence on the output flow of the pump and the speed of the actuator.

By adding a pilot orifice (Ø 0.8 mm) and a pressure pilot valve pressure compensation can be added to the flow control function. See the circuit diagram below, left.





Shown above is **load-sensing compensator, code FF1** with an NG6 interface on top of the control valve. That allows direct mounting of a pilot valve for pressure compensation (see option \*FFP and \*FFK page 7). This version includes the pilot orifice.

Due to the interaction of flow and pressure compensation this package has not the "ideal" control characteristic. The deviation is caused by the pilot valves characteristic.

If a more accurate pressure compensation is required, the **2-valve load-sensing compensator code FT1** can be used. The circuit diagram of this version is shown left.

Here the interaction of the two control functions is avoided by using two separate control valves for flow and pressure compensation.

The 2-valve compensator is equipped with an interface NG6 on the compensators top side.





#### Hydraulic-mechanical power compensator

The hydraulic-mechanical power compensator consists of a modified remote pressure compensator (Code  $*L^*$ ) or of a modified load-sensing compensator (Code  $*C^*$ ) and a pilot valve. This pilot valve is integrated into the pump and is adjusted by a cam sleeve. The cam sleeve has a contour that is designed and machined for the individual displacement and the nominal power setting.

At a large displacement the opening pressure (given by the cam sleeve diameter) is lower than at small displacements. This makes the pump compensate along a constant power (torque) curve (see diagrams on opposite page).

For all nominal powers of standard electrical motors Parker offers a dedicated cam sleeve. The exchange of this cam sleeve (e.g.: to change power setting) can easily be done without disassembly of the pump.

On top of that an adjustment of the power setting can be done within certain limits by adjusting the preload of the pilot control cartridge spring . That allows an adjustment of a constant power setting for other than the nominal speeds (1500 min<sup>-1</sup>) or for other powers.

#### Ordering code for the power option

The first digit designates the power setting:

Code G = 11.0 kW etc. up to

**Code 3** = 132.0 kW

The second digit designates the pilot flow source:

- **Code L** internal pilot pressure, remote pressure function.
- **Code C** external pilot pressure, combines power compensation with load-sensing compensation.

The third digit designates the possibility to adjust the overriding pressure compensation:

- **Code A** comes with a top side NG6/D03 interface on the control valve to mount any suitable pilot valve or Parker pump accessories.
- **Code C** includes a pilot valve for manual pressure adjustment. Max. setting: 350 bar.





#### Note:

If \*CB is connected to an external pilot valve and 0.8 mm orifice  $\begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ 





Parker Hannifin Corporation Hydraulics Group

### The graphs below show typical power curves, collected during following conditions:

| Speed       | : | n = 1500 rev/min                        |
|-------------|---|-----------------------------------------|
| Temperature | : | t = 50 °C                               |
| Fluid       | : | HLP, ISO VG46                           |
| Viscosity   | : | $v = 46 \text{ mm}^2/\text{s}$ at 40 °C |







#### Proportional displacement control, code FPV

The proportional displacement control allows the adjustment of the pumps output flow with an electrical input signal.

The actual displacement of the pump is monitored by an LVDT and compared with the commanded displacement in an electronic control module PQDXXA. The command is given as an electrical input signal (0 - 10 V or 0 resp. 4 - 20 mA) from the supervising machine control. The command can also be provided by a potentiometer. The electronic control module offers a stabilized 10 V source to supply the potentiometer.

The electronic module compares permanently the input command and the actual displacement by powering the proportional solenoid of the control valve. A deviation from the commanded displacement leads to a modulation of the input current to the solenoid. The control valve then changes the control pressure (port A) until the correct displacement is adjusted.

Version FPV of the proportional control does not provide a pressure compensation. The hydraulic circuit must be protected by a pressure relief valve.

### Proportional displacement control with overriding pressure control, codes UPR, UPK and UPM

Compensator version **\*UPR** provides electro- hydraulic displacement control and pressure stage mounted on elbow manifold. The elbow manifold provides NG6/D03 interface on top to mount a pressure pilot valve (not included in \*UPR).

When using a proportional pressure pilot valve an electro-hydraulic p/Q control can be realized. The proportional pressure pilot valve PVACRE..35 is included in compensator version **\*UPK**. By using the digital module PQDXXA-Z00 it is possible to control the displacement proportionally with overriding open loop proportional pressure control.

Compensator version **\*UPM** is completed by a pressure transducer Parker SCP 8181 CE. In combination with control module PQDXXA-Z00 a closed loop pressure control of pump outlet pressure is available. The control module also offers an electronic power limiter in addition to closed loop pressure control with this compensator option.

#### Note:

Minimum pump pressure (appr. 20 to 30 bar) depends on system and pilot valve used. Pump cannot fully downstroke if system pressure is below that level.





The digital control module code PQDXXA-Z00 is designed for rail mounting.

#### Features

- · Digital control circuit
- Parameter setting via RS-232 interface
- All settings (ramps, MIN/MAX, control parameters) can be stored digitally and recalled from a PC to duplicate settings to other modules
- Ramp time up to 60 seconds
- Compatible to the relevant european EMC specifications
- · Easy to use PC based setup software
- Covers all displacements from 16 to 270 cm3/rev
- Covers all functions: displacement control, displacement control with open loop pressure control, displacement control with closed loop pressure control and displacement control with closed loop pressure control and electronic power limitation.



#### Ordering code







Digital control module for p/Q control

For all frame sizes series PV

Version A



#### **Technical data**

| Mounting style         |       | Snap-on mounting for EN50022 rail                                                         |
|------------------------|-------|-------------------------------------------------------------------------------------------|
| Body material          |       | Polycarbonate                                                                             |
| Inflammation class     |       | V2V0 acc. UL 94                                                                           |
| Mounting position      |       | any                                                                                       |
| Env. temperature range | [°C]  | -20+55                                                                                    |
| Protection class       |       | IP 20 acc. DIN 40 050                                                                     |
| Weight                 | [g]   | 160                                                                                       |
| Duty ratio             | [%]   | 100                                                                                       |
| Supply voltage         | [V]   | 1830VDC, ripple <5% eff.                                                                  |
| Rush in current        | [A]   | 22 for 0.2 ms                                                                             |
| Current consumption    | [A]   | < 4 for p/Q control ; < 2 for Q-control                                                   |
| Resolution             | [%]   | 0.025 (power 0.1)                                                                         |
| Interface              |       | RS232C, 9600 baud, 3.5 mm cinch                                                           |
| EMC                    |       | EN 50 081-2, EN 50 082-2                                                                  |
| Connctors              |       | Screw terminals 0.22.5 mm <sup>2</sup> , plug in style                                    |
| Cables                 | [mm²] | 1.5 (AWG 16) overall braid shield, for supply and solenoid connection 0.5 mm <sup>2</sup> |
|                        |       | (AWG 20) overall braid shield, for sensor and command signal connections                  |
| Max. cable length      | [m]   | 50                                                                                        |

For programming the module via PC, an interface cable is needed, please order part number PQDXXA-KABEL separately.



#### Programming software

Diagrams

The programming of the p/Q control module is done in an easy to learn mode. To select the pump model and size and to set the control paramters the program **ProPVplus** must be started. This program runs under WINDOWS<sup>®</sup> 95 and higher.

The latest version of this software can be downloaded at the following internet address:

#### www.parker.com/euro\_pmd

The software offers the following features:

A **TERMINAL** window to set or read out the control parameters of the module. Settings as well as comments entered in the terminal window can be stored also in RTFformat (opens e. g. under WORD or other text editors)

A **MONITOR** window allows to display process variables in numerical format.

An **OSZILLOSKOP** window displays process variables as curves. The oscilloscope offers a start - stop function. The images can be saved and stored e. g. for import into other programs.

#### Features

- Display and documentation of parameter sets
- Save ond reload of optimized parameter sets
- Offers oscilloscope function for easy performance evaluation and optimization
- Pre-optimized parameter sets for all PVplus piston pump
- Sizes already in E<sup>2</sup>PROM memory



#### Response time (50-300 bar)

| Pump size | TA [ms] | TR [ms] |
|-----------|---------|---------|
| PV092     | 90      | 90      |
| PV180     | 170     | 170     |
| PV270     | 250     | 250     |

Typical dynamic characteristic



5

Catalogue HY02-8001/UK Accessories Compensator

## Hydraulic Pumps, Variable Series PV



Compensator accessory only available on pump, not as single items (replacement kit see spare part list PVI-PVAC-UK).





-Parker

Parker Hannifin Corporation Hydraulics Group

#### Schematics PVAC1P\*



#### Schematics PVAC2P\*



#### Schematics PVAC1E\*



#### Schematics PVAC2M\*/PVAC2E\*





#### Ordering code proportional pressure control valve



#### Proportional pressure control valve

Proportional pressure pilot valves of series PVACRE\* (RE06...) are powered by external electronic modules





(see catalogue HY11-3500 for reference). They allow an infinite electronic adjustment of the pumps compensating pressure.



#### Schematic PVACRE\*

**Example for PVACRE\* mounted** 



**Dimensions PVACRE\*** 





-Parker

Parker Hannifin Corporation Hydraulics Group